or2(x, x) -> x
and2(x, x) -> x
not1(not1(x)) -> x
not1(and2(x, y)) -> or2(not1(x), not1(y))
not1(or2(x, y)) -> and2(not1(x), not1(y))
↳ QTRS
↳ DependencyPairsProof
or2(x, x) -> x
and2(x, x) -> x
not1(not1(x)) -> x
not1(and2(x, y)) -> or2(not1(x), not1(y))
not1(or2(x, y)) -> and2(not1(x), not1(y))
NOT1(and2(x, y)) -> NOT1(x)
NOT1(and2(x, y)) -> NOT1(y)
NOT1(or2(x, y)) -> NOT1(x)
NOT1(or2(x, y)) -> NOT1(y)
NOT1(or2(x, y)) -> AND2(not1(x), not1(y))
NOT1(and2(x, y)) -> OR2(not1(x), not1(y))
or2(x, x) -> x
and2(x, x) -> x
not1(not1(x)) -> x
not1(and2(x, y)) -> or2(not1(x), not1(y))
not1(or2(x, y)) -> and2(not1(x), not1(y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
NOT1(and2(x, y)) -> NOT1(x)
NOT1(and2(x, y)) -> NOT1(y)
NOT1(or2(x, y)) -> NOT1(x)
NOT1(or2(x, y)) -> NOT1(y)
NOT1(or2(x, y)) -> AND2(not1(x), not1(y))
NOT1(and2(x, y)) -> OR2(not1(x), not1(y))
or2(x, x) -> x
and2(x, x) -> x
not1(not1(x)) -> x
not1(and2(x, y)) -> or2(not1(x), not1(y))
not1(or2(x, y)) -> and2(not1(x), not1(y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
NOT1(and2(x, y)) -> NOT1(x)
NOT1(and2(x, y)) -> NOT1(y)
NOT1(or2(x, y)) -> NOT1(x)
NOT1(or2(x, y)) -> NOT1(y)
or2(x, x) -> x
and2(x, x) -> x
not1(not1(x)) -> x
not1(and2(x, y)) -> or2(not1(x), not1(y))
not1(or2(x, y)) -> and2(not1(x), not1(y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
NOT1(or2(x, y)) -> NOT1(x)
NOT1(or2(x, y)) -> NOT1(y)
Used ordering: Polynomial interpretation [21]:
NOT1(and2(x, y)) -> NOT1(x)
NOT1(and2(x, y)) -> NOT1(y)
POL(NOT1(x1)) = 2·x1
POL(and2(x1, x2)) = 2·x1 + 2·x2
POL(or2(x1, x2)) = 2 + 2·x1 + 2·x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
NOT1(and2(x, y)) -> NOT1(x)
NOT1(and2(x, y)) -> NOT1(y)
or2(x, x) -> x
and2(x, x) -> x
not1(not1(x)) -> x
not1(and2(x, y)) -> or2(not1(x), not1(y))
not1(or2(x, y)) -> and2(not1(x), not1(y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
NOT1(and2(x, y)) -> NOT1(x)
NOT1(and2(x, y)) -> NOT1(y)
POL(NOT1(x1)) = 2·x1
POL(and2(x1, x2)) = 1 + 2·x1 + 2·x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
or2(x, x) -> x
and2(x, x) -> x
not1(not1(x)) -> x
not1(and2(x, y)) -> or2(not1(x), not1(y))
not1(or2(x, y)) -> and2(not1(x), not1(y))